
NASA CONTRACTOR 
REPORT 

!NP.':A-CR-149977) EXPERIHENTAL DEVELOPMENT N76-31329 
C?' PROCESSES TO PRODUCE H O H O G E N I Z E D  ALLOYS 
OF I f ldISCIBLE HETALS, PHASE 3 (TRW Systems 
G r o u p )  53 p BC 84.50  CSCL 11F Unclas 

G3/26 02427 

1 

EXPER IMENTAL DEVELOPMENT OF PROCESSES TO PRODUCE '. 
HOMOGEN !ZED I<.:-LOY S OF IMM l SC l BLE METALS: PHASE I I I 

I 

By J. L- Reger 
TRW Systems Group 
Redondo Beach, CaIifornia 

August ; 376 

Prepared for 

N A S A -  G E O R G E  C .  M A R S H A L L  S P A C E  F L I G H T  C E N T E R  
Marshall Space Flight Center, Alabama 35812 



- T E C H N I C A L  REPORT S T A N D A R D  T I T L E  P A G E  
1 REPORT N17. 2. COVERNMNT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. 

NASA CI2-149977 
2 T I T L E  AND SUBTITLE 5. REPORT DATE 

Exper imenta l  Developnlent of P r o c e s s e s  to Produce  
Homogenized Alloys of Immisc ib le  Metals ,  Phase  I11 

7 .  A U T H M ( S )  

A u ~ u s t  19TG 
6. PERFORMING OAGANIZATION C ( 0 E  

6.  PERFORMING ORGANIZATION REPOR r ' 1  
J. L. R e g e r  

9 PERFORMING ORGANIZATION NAME AN0 ADORESS 

National Aeronautics  and Space Administrat ion 
U'ashingtan, D. C.  205463 

lo.  WORK UNIT  NO. I 
TRW Sys tems  Group 
Redondo Beach, California 

li SPONSORING AGENCY NAME AN0 ADDRESS 

I Cont rac to r  I 

1 1. CONTRACT OR GRANT NO. 

NAS8-27805 
13 .  TYPE O F  REPOR., & PERIOD COVEREL) 

1 

.- . 

1.1. SPONSORING ASENC'r C C L t  

15 SUPPLEMENTARY NOTES 1 

1 
3 

16. A8STRA T 
An exper imenta l  d r o p  tower  package was designed and built f o r  u se  in the  MSFC 4- 

second d r o p  tower. T h i s  effort  cons is ted  of n t he rma l  ana lys i s ,  conta iner /hea ter  fabricat ion.  
and zssembly  of a n  expulsion device f o r  rapid quenching of heated spec imens  during 
conditions. Six gallium-bismuth spec imens  with composit ions in the immiscibility region f 
(50  a /o  of each  e lement)  w e r e  processed  in the exper imenta l  package: four during l ~ w - ~ r a v i t ?  i 
conditions ancl two under a one-gravity environment.  One of  the  one-gravity processed  sptlci- 
mcns  did not have te lemetry  da ta  and was  subsequently deleted fo r  ana lys is  s ince  the process in& 
conditions w e r e  riot k n ~ w n .  Metal lurgical ,  Hall effect.  rttsistivity. and superconductivity ( 

examinations w e r c  per formed on the five spec imens .  Exam ination of the spec imens  showed 
that  the gallium w a s  d i spe r sed  in  the bismuth. T h e  low-gravity processed  spec imens  showed 
a relat ively uniform distr ibut ion of gal l ium, with par t ic le  s i z e s  of 1 l m  o r  l e s s ,  in con t r a s t  
to the one-gravity control  specimen.  Comparison of the cooling r a t e s  of the dropped spccimc~i: 
ve r sus  mic ros t ruc tu re  indicated tbat  low cooling r a t e s  :Ire more  desirable. 'The Hnl l  t \ f f t ~ t  . 

and resis t ivi ty measu remen t s  demonst ra ted  that :ill of the s ~ c i m e n s  exhibited c h n r : ~ c t c r i ~ t i c a  i 

different  f rom e i ther  p u ~  e bismuth o r  gal l ium, indicating the s a m p l e s  w e r e  bt.havinl: s i m i l : ~ r i ~  j 
to  heavily doped ex t r in s i c  semiconductors .  The  superconductivity t e s t s  gave ve ry  n n o ~ n a l o u s  

r e su l t s  between the one-gravity and the low-gravity spec imens .  suggest ing that l a r g e  in t t rn :~!  I 
prr:ssures and/or  bulk su r f ace  ef fec ts  between ti,:. two e l emen t s  w e r c  making the proccsscd  1 
s jwcimens  hehave m o r e  like gallium deposited f i l m s ,  y (;a o r  Ri 111 a t  high p r e s s u r e s .  1 

I 
! 

--I 

!7 K F V  w ~ ~ ~ n q  18 DISTRIBUTION STATEMENT 
i 

Irnclnssific~I - Unlimited 
I 

I Director .  - -- 
1 )  SECURITY CLASSIF. (d th'l r m p d l  20.  SECURITY C L A I S I F .  (of thlm wee) 

U t ~ c ~ a s s i f i e d  
HSVC - Form 1292 ( R e v D e c e m h e r I 9 ? ~ )  k o r  $ale 1-y National Technical Inforntation Service, Spr in~f i t l< l .  Virgin13 ? ?  l q l  

Unclassified J 52 N'l7S 



l h l s  raport was pmpared by TW S y s t a  Group, RIQndo krd. 
Cll i famla, and contrlnr the n s u l t s  of the Phase I11 work a c c r r ) I l r W  
durlng the period 7 December 1971 to  15 December 1972. The n s u l  tr 
fm the Phase I task a n  documented I n  TRW Systems Report No. 10677- 
6006-R0-00, Slpt8mber 1971, and the results from the Task I1 ef fo r ts  
arc, docwnted I n  TRY Systms Report No. 18677-6008-R0-00, N o v r k r  
1971 . T b  program was o r ig i  nated a d  i s  managed by the bow C. 
Marshall Space Fl lght  Center under the technlcal directlon o f  Mr. I. C. 
Yatas, Jr. 

T k  wrk performed on the program was accorplished by the Advancad 
Technology Divlslon o f  TRY Systems Group. Technlcrl d irect lon o f  the 

p r o g r v  i s  provlded by the Materlals Sclence Staff  o f  the Research and 
Technology Operations. The Pmgram Manager i s  Mr.  R. L. H u l  and 
the Prlnclpal Investigator i s  J. L. Reger. Responsible technical pw- 

sonnel dm supported th ls  program are rckmledged below: 

Dr.' Y. T. Anderson, Materials Sclence Staff 

Mr. R. A. kndelson, Materials Science Staff 

Mr. V. H. Relneklng, Materials Sclence Staff  

Mr. C. Salts, Jr., Materlals Science S f a f f  

Mr. R. Valencla, Jr., 13rterials Sclence Staff 

Acknowledgment I s  grateful 1) extended to Professor A. Yue o f  
U.C.L.A. f o r  his assistance I n  performlng the Hall measurarrunts. 



TABLE OF CONTENTS 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . .  1 

THERMAL ANALYSIS . . . . . . . . . . . . . . . . . . . .  2 

. . . . . . . . . . . . . .  CONTAINERIHEATER FABRICATION 5 

3.1 Container Fabr icat ion . . . . . . . . . . . . . .  5 

. . . . . . . . . . . . . . . .  3.2 Heater Fabr icat ion 6 

. . . . . . . . . . . . . . .  EXPULSION DEVICE ASSEMBLY 10 

. . . . . . . . . . . . .  4.1 Major Par t  Descript ion 10 

. . . . . . . . . .  4.2 Expulsion Devlce Fabricat ion 14 

. . . . . . . . . . . . . . . . . . .  HIDE OF OPERATION 15 

. . . . . . . . . . . . . . .  METALLURGICAL EXAMINATION 21 

. . . . . . . . . . . . . . .  6.1 Specimen Preparzt ion 21 

. . . . . . . . . . . . . . .  6.2 Optical Examination 21 

6.3 Scanning Electron Microscopy . . . . . . . . . .  25 

. . . . . . . . . . .  6.4 Electron Microprobe Analysis 28 

. . . . . . . . . . . . . . . . .  ELECTRONIC PROPERTIES 28 

7.1 Hal 1 E f f e c t  and E lec t r i ca l  . . . . . . . . . . .  R e s i s t i v i t y  Measurements 28 

. . . . . . . . .  7.2 Superconducti v i  ty Measurements 31 

. . . . . . . . . . . . . . . . . . . . . .  CONCLUSIONS 42 

. . . . . . . . . . . . . . . . . . . . . . .  REFERENCES 45 

iii 



Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Fi gure 7. 

Figure 8. 

Figure 9. 

10. 

Figure 11. 

Flgure 12. 

Figure 13. 

Fi  gure 14. 

F i g u n  15. 

Figure 16. 

Flgure 17. 

FIGURES 

PI fle 

Phase Diagram o f  the Bismuth-Gal 1 ium 
Binary Coup1 e 

Drop Tower Cooling Times as a Functlon 
o f  Heat Transfer Coeffl cients 4 

Copper Formi ng Bar and Unmlded Tantalum Tube 5 

Tabbed Tantalum Container w i  t h  End Caps 
(Original Magnification; 3X) 7 

Tantalum Container; One End Melded w i  t h  
Inserted Copper Heat Sink and Top End Cap 
(Original Magnification; 3X) 7 

Fl  1 1 ed Tantal urn Sample Contal ner 
(Original Magnification; 3X) 

Exploded View o f  the HeaterIContai ner Assrmbly 9 

End V i e w  of Completed Heater/Contrincr Assembly 9 

Cross-Section o f  HeaterlContainer Assenbly 10 

Expulslon Devlce Assembly wi th  Major 
Functional El tments Marked 11 

Expulsion Device Assembly w i  t h  Major 
Functional Elements Marked 

Expul slon Devl ce Assembly w i  t h  Major 
Functional El emen ts Marked 11 

Expulsion Device Assembly wi th Major 
Functi onal Elements Marked 

Close-up Photograph o f  Experiment Contal ner 
Connection Area 12 

Schematic o f  Experlmnt;al Apparatus 16 

One Gravity Experiment Run 19 

Assembled Drop Tower Package Showing 
Expul sf on Apparatus 



FIGURES 

(CONTINUED) 

Figure 18. 

Figure 19. 

F i  gure 19a. 

Figure 20. 

Figure 20a. 

Figure 21. 

Figure 22. 

Figure 23. 

Figure 24. 

Figure 25. 

Figure 26. 

Figure 27. 

Assembled Drop Tower Packaging Showing 
Elect ronic  Sequences and Telemetry Assembly 

Photomicrographs o f  Specimens 

Photomicrographs o f  Specimens 

Scanning Elect ron Photomicrographs 
of Specimens 

Scanning Elect ron Photomicrographs 
o f  Specimens 

M i  croprobe Analyses o f  Specimens 1-3 
and 9-2. 

Block Diagram o f  Superconductivity Apparatus 

Instrumentat ion and Apparatus U t i l i z e d  I n  
the Superconductivity Tests 

Close-up Photograph o f  Specimen Coi l  s 

Superconducti ng Transi ti on i n  Specimen 4-5 

Superconducting Transf ti on o f  Niobl  um 

Anomalous Behavl o r  o f  Specimen 1 -3 During 
Superconductivity Tests 

Page 



Table 1. Telamtered Data fm Drop Tower Experlnnts 22 

Table 2. Hall  Coefficient, Reslstlvl2y, and Hal l  Uobl l l ty  
I n  GI-Bi Innrlsclble System a t  Zero Mgnet lc  
Field. 30 

Table 3. Su erconductivl ty Trans1 t loq Tunperaturns o f  P 68 lim-Blsmuth I m l s c l b l e  Systems and Other 
Forms o f  E a l l l m  and Blsnwth. 38 



1 .0 INTRODUCTION 

The opportuni t ies f o r  u t i l i z i n g  manned space f l i g h t s  t o  ob ta in  

near wei ght less condi t lons  f o r  processing imni s c i  b l e  systems i n t o  homo- 

genized o r  metastable metal a l l o y s  o r  other  mater ia ls  w i l l  be severely 

1 i m i  ted u n t i l  the space shu t t l e  i s  operat ional . Since much p re l  imlnary 

in format ion and experimentation i s  required i n  order t o  assess the po- 

t e n t i a l  useful  n e s ~  and process requirements o f  imnisc i  b l e  systems, I t 

.:as decided to assess the c a p a b i l i t i e s  o f  the MSFC drop tower as a sho r t  
durat ion, low gravi t y  fact  li ty f o r  process1 ng imnisc i  b l e  metal systems. 

The system gallium-bismuth, i n  equal atomic percentages, was chosen as 

the binary p a i r  f o r  processing and study. This required a thermal 

analys is  o f  the complete system, fab r i ca t i on  o f  the conta iner lheater  

experiment package, assembly o f  the expui s ion device, establishment o f  

the operat ional mode o f  the drop package and examination o f  the pro- 

cessed specimens, both metal 1 u rg ica l  l y  and f o r  t h e i r  e lec t ron i c  pro- 

per t ies.  

Each o f  these areas i s  d i  scussed separately, w i  t h  the concl usions 

del ineated a t  the end o f  the repor t .  



2.0 THEWL ANALYSIS 

From the standpolnt o f  an assumed 3.5 second nominal frrr f a l l  
tlme i n  the MSFC drop tower, I t  was decided t o  u t l l l  ze the 98111 un- 
bismuth couple for the In1 t l a l  thermal analysis and tests. Thls con- 
s lderat lon was based on We followlng: (1) the consulate o r  complete 

miscl b l l l  ty tenperature I s  approximately 250°C a t  50 a/o gal 1 lum (Fl gum 
I), (2) them I s  a poss lb l l l t y  that  the couple, i f  sufficiently hom- 
genl zed, may be. a potenti a1 ex t r lns l  c semiconddctor [Reference 11, and 
(3) the materials a r t  easi ly  handled I n  t h i s  temperature regime and 
pose no particular safety hazard except fm the thermal aspact durlng 
i n l  tl a1 process1 ng . 

S V S T t M  D l - 0 0  

Figure 1 . Phase D l  agram o f  the B l  smuth-Gal 1 i urn Blnary Couple 

The salrple s ize was optlmi zed w i  t h  respect t o  r tqu l  red f l  nrl 
tenperatwe a f t e r  drop, mrxl mum achi evrble heat transfer, and desl gn 

conslderatlons f o r  the container and heater conflguratlon. The f i n a l  
temperature a t  the end o f  the free f a l l  must be less than 29.C. the 



melt ing po in t  o f  gal l ium (and preferably much lower). Maxlmum achievable 

heat t ransfer  I s  accomplished by f l a t  p la te  geometries, w l  t h  tu rbu lent  
f low o f  the cool ing f l u l d .  I n  order t o  minimlze thermal backflow f r o m  
the heater and contalner support, the heat f l u x  was assumd t o  be 

p r imar i l y  by radiation and st111 a i r  convectlon through an annular space 
between the contalner and the heater element. Prevlous t h e m 1  ca l -  

culat lons on the heatlng ra te  o f  a gallium-bismuth couple o f  l a rge r  

dlmensions [Reference 2) showed t h a t  acceptable heating tlmes could be 
achieved f o r  power Inputs between 15 and 34 watts. F lnal  power Input  

for  heat lng (to be discussed l a t e r )  was 22 watts, Thls corresponds t o  
2 2 a wat t  density Input  o f  3 watts per cm (20 W/ln ) for  the capsule, 

which I s  one-ha1 f the ;.econmended s t l !  1 a i r  watt  dens1 t y  value f o r  the 

heater element used, 

The in terna l  contal ner dimensions u t i  11 zed f o r  cal cu l  a t1  ng the 
drop tower experiment cool ing curves are 1.27 cm (0.5 In.)  long by 

0.635 cm (0.25 i c . )  wide by 0.318 cm (0.125 in . )  th lck .  The contalner 
material  i s  tantalum w l  t h  a wal l  thickness of 0.025 cm (0.010 In.  ). 

However, slnce bismuth has a lower thermal condut ;I v l  t y  than e l  ther  

tantalum o r  gallium, the contalner wa l l  was assumed t o  be blsmuth t o  

obta in the cool ing curves. I n  a l l  cases, the calculat ions assume worst 
case condltions where necessary i n  order t o  assure t h a t  the drop tlme 

I l m l  ta t lons could be met. Figure 2 I l l u s t r a t e s  the container cool ing 

times a t  the center l ine o f  the speclmen f o r  three heat t ransfer  co- 

e f f i c i e n t s ,  An In1  t l a l  coolant water temperature o f  approxlmately O°C 

was assumed since the pre-drop tlme a f t e r  the loadlng o f  the water should 

be mlnlmal . As can be seen, the heat t ransfer  coe f f i c i en t  must be hlgher 

than 0.568 watt/cm2 'C (1000 BTU/hr ft2 O F )  I n  order t o  cool the speclmen 

i n  3.5 seconds o r  less. Addi t l o n a l  calculat ions were made t o  determine 
the waterflow necessary t o  achieve the hlgher heat t rans fer  values. For 
a flow ve loc i ty  o f  6.1 mlsec (20 f t l s e c )  through a constr ic ted annulus 
o f  0.32 cm (0.125 In.), the flow ra te  I s  0.84 kgjsec (1.85 lb/sec) fo r  a 

2 pressure drop o f  approximately 3.5 kN/m (0.5 ps l ) .  Thls corresponds b 
a heat t ransfer  c o e f f l c l e n t  o f  5.08 watt/cm2 O C  (8950 BTU/hr ft2 OF) I f 



F l  gure 2. Drop Tower Cob' l n g  TImes as a Function 
o f  Heat Transf vr  C o e f f l  c len ts  . 



the f l ow i s  tu rbu len t ,  o r  2.84 watt/cm2 O C  (5000 BTU/hr f t2 O F )  f o r  

laminar  flow. Since the Reynolds number i s  approximately 100,000, which 

I s  i n  the  t r a n s i t i o n  region, t he  lower  c o e f f i c i e n t  value was used f o r  

c a l c u l a t i n g  the maximum coo l i ng  curve shown i n  F igure 2. Since both 

conservat ive designs and thermal ca l cu l a t i ons  were u t i  1  i zed, the  desi r ed  

c o o l i ~ g  r a t e  was considered to  correspond t o  a  heat  t r a n s f e r  c o e f f i c i e n t  

value between 0.568 and 2.84 watt/cm "C. Thus the  f low r a t e  goal o f  the 

expuls ion device was aimed a t  ach iev ing a discharge r a t e  o f  0.84 kg/sec. 

3.0 CONTAINERIHEATER FABRICATION 

3.1 Container Fab r i ca t i on  

As mentiorled p rev ious ly ,  the  con ta iner  was const ructed of  comner- 

c i a l l y  pure tantalum sheet 0.025 cm (0.010 i n . )  t h i c k .  Fab r i ca t i on  

cons is ted o f  the f o l l o w i n g  steps. 

The sheet was formed over  a machined rectangulap ba o f  OFHC 

copper t o  o b t a i n  a  ho l low rec tangu la r  tube 18  cm ( 7  i n . )  long. An 

unwelded, formed b u t  r e j ec ted  tantalum tube and the copper forming bar  

are shown i n  Figure 3. The tantalum tube w i t h  the  copper bar  s t i l  I 
i n se r t ed  was then e l ec t r on  beam (E-B) welded down one edge t o  form a 

welded seam. Previous attempts t o  convent iona l ly  weld the tantalum 

were unsuccessful, so a1 1 welding steps u t i  1  i zed E-B welding. 

F i  gure 3. Copper F o n i  ng Bar and Unwel ded Tantal  um Tube 



The weldf!id tube was 'then c u t  I n t o  sect lons 1.31 cm (0.165 4n.)  
long, md both ands tabbed 0.051 an (0.020 In . )  on a l l  f o u r  s ldes, A 

t rbbed contalnctr with unattached end caps I s  11 1 u s t r a t r d  I n  Figure 4. 

A1 1 o f  the pa r t s  (tabbed contalners and ee:d caps) werv then 

cleaned I n  h o t  concentrated n l t r l c  acld,  r l nsed  I n  d l s t l l l e d  watar and 

dr led.  The br:,ttom end cap was spot  welded t o  tne tabbed con ta lner  f o r  

E-B weldlng adjustment, a copper heat s i nk  I nse r ted  I n t o  the  contalner,  

and the bottom end cap E-B welded t o  the conta l  ner. F.l gum 5 11 l u s t r a t e s  

a conta iner  hll th one end welded and the heat s i nk  i n  place. Each welded 

conta lner  was leak checked by the  a1 r bubble t e s t .  

Nlne 1::ontainers were acceptable, and were loaded w l  t h  gal  1 lum 

and bismuth. The bismuth was obtained from A l f a  Inorganics as MNS pure 

metal chlps (metal 1 l c  p u r l  ty : 99.99995%). The gal  1 I urn was ob ta l  ncd 

from Alcoa 8,s MSN+ pure m t a l .  Each metal was wefghed tc g l ve  a 50 a10 
composl t l o n  f o r  each contalner.  The metals were separately loaded 

(blsmuth f i r s t )  by vacuum Induction me1 t i n g  the metal I n t o  the conta lner  

and cool ing under research grade argon. Very 1 l L t l e  ox ldat lon,  I f  any, 
3 was ev ident  a f t e r  processing cacn metal. A small (approximately 0.2 cm ) 

expansion vollr6, was l e f t  I n  each capsule. A1 though both g a l l  lum and 

blsmuth expand upon so l  I d1  f l c a t l o n ,  the expanslon a t  the h l  gher processing 

temperatures and f i n a l  E-B weldlng precluded t o t a l  f l l l l n g  o f  the con- 

t a l  ner. 

A f t e r  the metals were loaded I n t o  the  , ontainers,  the top end caps 

were spot welded t o  the contalnetu and E-B welded shut. Complete c losure 

was e s t r b l  lshed by f i l l n g  away p a r t  o f  the weld and mlcmscopic  exrminat lcn 

t,a dete'injne t h a t  the weld peiieirailori wus csniinuolrs drtfi cornpieta. 
FI gum 6 I s  a photomacrograph o f  a f l l  l# id,  completed contal  ner. 

k a  t e r  Fab ri c a m  3 . 2  -- 
The heater  conta iner  has a number o f  funct ions i t  must per t -om:  

( ? )  I t  must be able t o  heat the gal l ium-bis~nuth t o  the proccsslng 
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temperature, (2) i t  must d i l e c t  the coo l ing  water annular ly around the 
sample container, (3) i t  must keep the sample container i n  posl t i o n  

during the tes t ,  and ( 4 )  i t  must not  reradiate any s i g n i f i c a n t  t h e m 1  
energy back to the sample container a f t e r  the end o f  the test .  

Inconel sheathed N i  chrome heat ing elements werc u t i  1 i zed (XacTglo 

element no. 601-1103-001) since they can be shaped, brazed and handled 

wi thout  danger o f  shor t ing during asseh ly .  The elements were wound 

around a 0.95 cm (0.375 in . )  by 1.90 cm (0.75 in . )  mandrel, mmwd, 

and the wound element separated t o  a t o t a l  length o f  C.27 cm (0.50 in.). 

The f o m d  heater element was then brazed to the bottom p l a t e  o f  a series 

304sta in less  steel  enclosure w i th  0.48 cm (0.187 i n . )  Transi te 

i nsu la t i on  between the heater element and the s t a i  nless wa l l .  The tuo 
sides o f  the enclosure we= then spot delded t o  the bottom p la te ,  again 

w i t h  Transite i nsu la t i on  between the sta in less sides and the heater 

e lemnt .  The sample container was then clamped i n  place w l t h  0.025 an 
(0.010 in .  ) s ta in less s tee l  support brackets, spot welded, and the top 

p la te  then s i m i l a r l y  spot welded i n  place. F ina l l y ,  the brazed AN f i  t t i n g  

with the water i n l e t  tubing was attached. Figure 7 shows a somawhat 

exploded view o f  the various elements making up the complete heater/ 

ccntainer assenbly, and Figure 8 shows a fabr icated heater assembly from 

the water o u t l e t  end. This p a r t i c u l a r  assenbly was use0 t o  demonstrate 

f e a s i b i l i t y  o f  the complete experiment package as discussed i n  Section 4. 

Figure 3 i s  a cross-sectional view perpendicular t o  the flow path 

schemt lca l  l y  ill us t r a t i  ng the various posi t ions o f  the major components 

o f  the heater/sample container a s s e d l y  . 

After the heater assembly was complete, n icke l  w i re  was s i l v e r  brazed 

to  the Nichrome heat ing wire and the exposed heat ing element i nsu la t i on  

protected w i  th a coat ing o f  Sauereisen ceramic cement. Each heate!: 

assembly was checked f o r  element resistance and any shorts. A13 assenrblies 

were sat isfactory, w l t h  an element resistance o f  35 ohm. 



Figure 7. Exploded View o f  t h e  Hea ter/Con t a i  ner Assembly 

F i  gb;e 8. End View o f  Completed Hea te r lconta iner  Assembly 



S W L E  
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ANNULAR SPACE 
FOR WATER FLOW 

Figure 9. Cross-Section o f  Heaterjcontalner Assembly 

4.0 EXPULSION DEVICE ASSEMBLY 

4.1 Major Par t  Descript ion 

Figures 10 through 13 show the expulsion device assenbly a t  

approximately 90' r o t a t i o n  angles, and Figure 14 i s  a close-up photo- 

graph o f  the f i t t i n g  and terminal s t r i p  where the experiment i s  to 

be connected. Each major sub-element i s  lab led  and described below. 

E-1 : Expulsion Tank 

The expulslon tank i s  a surplus Surveyor l i q u i d  propulsion tank 

(SIN 159) w i t h  a Teflon bladder. There I s  an i n t e r i o r  vent l i n e  f o r  

f i l l i n g  which extends v e r t i c a l l y  f r o m  the bottom o f  the tank. The 
ex te r i o r  she l l  i s  s ta in less  s tee l ,  and the o r i g i n a l  working pressurn 

was 4000 k ~ / n ~  (600 ps i  g j  . The tank has been proofed to 3100 kN/n2 

(450 ps lg)  and the recomnended working pressure i s  2400 kN/n2 (350 pslp).  



F igu re  10. F igu re  11. 

F i g u r e  12. F i g r e  13 .  
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Figure 14. Close-up Photograph o f  Experiment 
Container Connection Area 

4.1.2 E-2:  Experiment Attachment F i x t u r e  

This f i x t u r e  i s  a AN 1.27 cm (0.5 i n . )  f i t t i n g  at tached t o  t he  master 

remote con t ro l  valve (V-4) .  The experiment conta iner  has the corresponding 

female f i x t u r e  brazed t o  the entrance and i s  e a s i l y  connected. The hea te r  

and thermocouple leads are connected t o  the termina l  s t r i p  C-2. 

V-1 : Bladder Vent Valve 

This valve i s  connected t c  the i nne r  vent l i n e  and serves bo th  as 

the  a i r  l eak - i n  when expanding the b ladder  before f i l l i n g  and the a i r  

leak-out  when f i l l i n g  the tank w i t h  the coo lant .  

4.1.4 V-2: Vacuum/Vent Valve 

This valve i s  connected t o  the ou te r  metal she1 1 and serves two 

purposes: (1) a s l i g h t  vacuum i s  p u l l e d  through V-2,  w i t h  V-1 open, t o  

expand the b ladder  t o  the ou te r  w a l l ,  and ( 2 )  the gas pressure i s  vented 

through i t  when t he  t e s t  i s  over  t o  re1 i eve  the expuls ion pressure on 
the bladder.  

12 



4.1.5 V-3: L i q u i d  F i l l  Valve 

This valve i s  used t o  f i l l  the tank w i t h  the coo l i ng  water, and t o  

empty the tank a f t e r  the t es t s  are complete. 

4.1.6 V-4: Master Remote Control  Valve 

This valve connects t o  the experiment and i s  t he  valve t h a t  w i l l  be 

remotely operated dur ing  the  t es t .  

4.1.7 C-1 : Solenoid Connection f o r  Gas Actuated P i l o t  Valve 

This terminal  s t r i p  serves as the connection p o i n t  f o r  the  28-30V 

remote c o n t r o l l e d  power supply. The so lenoid actuates the p i l o t  va lve 

which opens the master remote con t ro l  valve dur ing  t es t .  When the vo l tage 

i s  removed, the master remote con t ro l  valve au tomat ica l l y  c loses. 

4.1.8 C-2: Experiment Terminal S t r i p  

This terminal  s t r i p  connects the ex te rna l  28-30V power source and 

the thermocouple 1 eads t o  the experiment. 

4.1.9 P-1 : Gas Actuated P i  l o t  Valve Connection 

This valve connection operates the p i l o t  valve through ac tua t ion  o f  

the solenoid.  The valve actuates through a pressure range o f  69 to 970 
2 kN/m (10-140 ps ig ) .  Since the ac tua t ion  time o f  the  master remote con- 

t r o l  valve i s  dependent upon the pressure ac tua t ing  the p i l o t  valve, i t  
2 i s  recomnended t h a t  a pressure o f  689 kN/m (100 ps ig )  be used. 

4.1.10 P-2: Main Pressur izat ion Line- 

This l i n e  connects t o  the main pressur i  za t l on  tank and t he  gas 

accumulator tank f o r  expuls ion o f  the  coo l ing  water through the exper i -  

ment dur ing the drop. As mentioned prev ious ly ,  the recommended working 
2 pressure i s  2400 kN/m (350 ps ig ) .  Further,  s ince i t  i s  undesirable t o  

suddenly pressur ize the tank, i t  i s  r e c o m n d e d  t h a t  the pressure be 



appl ied reasonably slowly h the worklng pressure (approximately 970 
k ~ / m ~  o r  140 ps l  g per minute). 

4.2 Expulsion Device Fabri za t lon  

The primary problem I n  assembling the expulsion device was t o  ob ta in  

the cor rec t  f low ra te  w i  t h l n  the desired expulsion pressure leve l .  The 

primary o u t l e t  from the expulsion tank i s  a 0.952 cm (0.3'15 i n . )  l l n e ,  

whlch I s  f ixed. The gas pressure expulsion l i n e  i s  a lso f i x e d  a t  0.635 cm 

(0.25 In.). The vent l i n e  I s  0.317 cm (0.125 i n . )  h u t  t h l s  I s  im-  
mater ial  since I t I s  closed during actual t es t ,  and does no t  I n t e r f e r e  

w l  t h  the pre-tes t 1 oadi ng opera ti on. 

Prel lmlnary tests w i th  the or1 g lnal  o u t l e t  1 i ne  showed t h a t  I t  was 

n o t  posslble to obta ln a f low r a t e  anywhere close t o  0.84 kg/sec a t  
2 pressures up to 2400 kN/m . 

Two major a l ternat ions were required: (1 ) trans1 t i o n  o f  the o u t l e t  

l l n e  t o  a l a rge r  diameter t o  reduce pressure drop t o  the experiment out- 

l e t ,  and (2) addi t l o n  o f  a gas accumulator t o  maintain constant expulslon 

pressure during the run. 

The f i n a l  o u t l e t  l i n e  was s ized a t  1.27 cm (0.500 I n . )  along w l t h  r n  

open or1 face b a l l  val ve a t  the master remote contro l  valve (V-4). I n  

order t o  reduce pressure losses ah the t r a n s i t i o n  po ln t ,  the 0.952 cm 

o u t l e t  l l n e  was gradual ly f la red  t o  the 1.27 diameter over a 1.9 cm 
length and brazed t o  a AN tee. The f i l l  l l n e  (V-3) was brazed t o  the 

branch and a mlnlmal length of tublng connected t o  the  contro l  valve (V-4). 

An 8.6 l i t e r  (2.3 gal lon)  high pressure accumulator was added to 
the gas pressurization l l n e  v ia  a tee f i t t i n g  beween the maln gas 

regulator  and the expulsion tank (E-1). A l l  plumbing was done w l t h  

0.635 cm (0.25 i n .  ) tublng, a1 though some advantage m l  gh t  have accrued 

by using 0.952 cm (0.375 In. )  diameter tublng t o  the tank (E-1 ) , again 

making a 2X dlameter t r a n s i t i o n  f l a r i n g  from the smal ler tublng to the 

1 arger. 



A l l  components were s t r u c t u r a l l y  braced and anchored to a 0.61 M 
(2  f t . )  square, 1.27 cm (0.50 in.)  th lck  aluminum p la te .  Thls p l a t e  

w(is assembled I n  the maln drop tower assembly box. 

A number of runs uslng ambient water were made on the assenbled 

apparatus f o r  various flow times. I n  a l l  cases, runs exceedlng two 
seconds gave the desl red f low ra te  (measured vol umetr ica l ly  as a func t ion  

of f low tlme) of 0.84 kgJsec o r  greater, Runs less than 2 seconds gave 
s l l g h t l y  less f l o w  rate, b u t  t h i s  I s  probably due t o  the delay tlme f o r  

f u l l  opening of the master remote contro l  valve (V-4). Thls delay 
time was estimated t o  be 0.2 seconds. 

5.0 MODE OF OPERATION 

Flgure 15 schematically Ill us t ra tes  the experimental set-up a t  TRW 

f o r  funct ional t es t i ng  the complete apparatus. The f o l  low1 ng operat lonal 

sequences were f o l  lowed. 

1. Attach the experlment container t o  f l x t u r e  E-2. Attach 

heater and thermocouple leads t o  connector C-2, and connect 

corresponding leads t o  MSFC contro l  panel. Energl ze heater 

and monitor temperatures. ( Heater voltage can be 28-30 

vol t s  . Thermocouple I s  Chrome1 -A1 umel) . 

2. Attach p l l o t  valve gas pressure supply t o  p l l o t  valve P-1 . 
3. Attach expulslon gas pressure supply l l n e  to l l n e  P-2. 

4. Attach solenoid connection l i n e s  from contro l  panel t o  
C-1 . (The voltage may be 28-30 vo l t s ) .  
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Figure 15. Schernati c o f  Experimntal Apparatus 
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5. Open bladder vent  val  ve V-1 . 
6. At tach a vacuum l i n e  t o  the vacuum/vent valve V-2. 

A small f o r e  pump vacuum system i s  s u f f i c i e n t .  

7. P u l l  a vacuum u n t i l  valve V-1 no longer  p u l l s  a suct ion.  

8. Close valve V-2. 

9. Open f i l l  valve V-3 and a t tach  a rubber hose t o  the 

l l n e .  Use an imnersion o r  cen t r i f uga l  pump t o  pump 

the c h i l l e d  (0-2°C) water  i n t o  expulsion bladder E-1. 

(This t ime may take 5-10 minutes, depending on pump). 

F i l l  w i t h  7 l i t e r s  (%4 ga l lons)  o f  water. 

10. Close valves V-1 and V-3. 

11. Pressur ize p i l o t  valve so lenoid l l n e  P-I .  

2 12. Pressur ize expuls ion tank E-1 to  2400 kN/m ( 350 ps ig ) .  

(This should be done a t  a r a t e  o f  689 k~ /m '  (100 ps ig )  

per  minute.) 

13. Observe thermal h i s  t o r y  o f  experimental apparatus. 

I'he hea t ing  t ime i s  about 30 minutes t o  reach ~ p p r o x i m a t e l y  

330°C (620°F) and the  ho ld  t ime f o r  m i s c i b i l  i t y  o f  the 

metals i s  another 15 minutes. 

14. A f t e r  heat ing time, shu t -o f f  power, drop apparatus, 

and actuate p i l o t  valve so lenoid P-1. 

15. Allow coo l ing  water t o  f low f o r  6.5 seconds (3.5 

seconds dur ing  drop and 3 seconds more to iso therma l l  xe 
heater, conta iner ,  e t c .  ) . Automat ica l ly  de-energi ze 

solenoid a t  C-1 a f t e r  6.5 seconds. 



16. Remove exper lmn ta l  container and at tach a new om.  

17. Open va;:r#n/vrnt valve V-2 to depressurize system. 

18. Repeat steps 1 through 17 as mqu l  red. 

Flgure 16 shows a run u t l l i z l n g  the standard capsule/hertl ng con- 

ta iner .  The water f low (tsmperature was 1-2OC durlng f l l l l n g )  was 
stopped a f te r  3.5 seconds t o  determine the re - rad ia t ion  a f t a r  a simulated 
drop. The second 2 second f low should have been 3 seconds, b d t  a f t e r  

10 minutes, the apparatus had only  re-themall zed to 25OC (77'F). Thus 
the flow a f te r  the apparatus has been dropped and I s  I n  the catch tube 
i s  merely to  keep the experimental container cold, SInce a minimal 

water supply should be I n  the tank during deceleration, the tank 

I s  n o t  completely f l l l e d  a t  s t a r t .  However, to prevent damage to 

the bladder, a small amount o f  water i s  l e f t  a f t e r  the drop. 

The G o  runs a t  TRW demonstrated t h a t  the run procedure 

produces the cool lng times required t o  lower the temperature o f  the 

sample t o  an acceptable value durlng the 3.5 second estimated drop 

time I n  the MSFC drop tower. Figures 17 and 18 are photographs of 

assembled drop package as Integrated a t  MSFC. The expulsion device, 

experiment assembly and the e lec t ron ic  package are located i n  the top 

pos i t ion  o f  the housing and the pressur izat ion bo t t l es  and waste water 

catch tank are mounted i n  the bottom pos i t i on  o f  the t,ousing. 
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Figure 17. A s s e a h l ~ J  Orup Tower Package S t i o ~ r i l ~ y  C . , . U . . ~ U I ~  Apparatus 

Figure 18. ks:el~lbled Drop Tower F a c k d y 1 1 1 g  S h o l ~ 1 1 1  ! I ~ ~ L  Lronic 
Sequences dnd Tcl e~ile t r y  Assernt~l y .  
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6.0 METALLURGICAL EXAMINATION 

6.1 Specimen Preparation 

The gal 11 um-bi smuth specimens, as received from NASA/mFC, were 

removed from the individual heater containers and marked wi th respect 

to the i r  spat ia l  posi t ion i n  the experiment (e.g., top end and which 
edge was closest t o  the main val ve) . This was f e l  t necessary since, 

w i  t h  the excep' on o f  the control specimen, the telemetered data o f  the 
drop specimens 14:ted i n  Table 1 showed some process differences. The 

only telemetered data obtained f o r  the control specimen was the i n i t i a l  
and f i na l  temperatures. The tantalum containers were then removed and 

both the leading and t r a i l i n g  edge o f  the specimen were polished. Since 

gal l im  me1 t s  a t  29 .75OC (85.55OF), a special j i g  was fabricated t o  

pol ish the specimens, and ice water was used as the coolant during 

polishing. The specimens were always handled wi th  tweezers and kept 
refr igerated when not being examined o r  tested. A portable i c e  chest 

was used t o  transport i9e specimens when they were moved from bui ld ing 

t o  bu!'ding. 

Examination o f  the two polished edges d i d  not  show any differences 

i n  appearance, even on the control (one sravi t y  processed) specimen, 
therefore the requirements on the spat ia l  control was eliminated. 

Optical Examination 

Af ter  the samples were polished, photomicrographs were taken of 

each specimen a t  59, 100 and lOOOX magnification. Typical areas are 

shown by the photomicrographs o f  Figures 19 and 19a. As can be seen i n  

a1 1 cases, there i s  a s igni f icant  dif ference between the control specimen 

(1-3) and the four specimens dropped from the drop tower. The gal l ium 

i s  dispersed i n  the bismuth, and except f o r  the control, the major i ty  

o f  the gall ium droplets are 1 urn or  s1 l e r  i n  diameter. The gal l ium 
i n  the control sample does not appear l a  be interconnected, and has a 

rapid ly quenched dendri ti c appearing microstructure. Since the c r i  teri a 
f o r  establishing thermal convection ce l l s  i s  that  the Rayleigh number 
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Re - $ 2 1700 [ ~ e f e r & e  31 where: 

g - acceleration 

B = temperature gradient 
a coeff ic ient  o f  thermal expansion 

d = character ist ic  dimension 

k = thermal d i f f u s i v i t y  

v = kinematic veloci ty 

calculat ions were made using averaged physical values [Reference 211 

o f  the gal 1 ium-bismuth mixture contained i n  the capsule, w i th  the 

character ist ic  dimension being e i the r  the long or  the transverse dim- 

ension o f  the capsule. These calculat ions were done using 980 cm/sec 2 
2 f o r  the control and 39.2 cm/sec f o r  the low grav i ty  specimens and 

various d i f f e ren t i a l  temperatures. The minimum Rayleigh number f o r  

the control was approximately 5400, while the maximum Rayleigh number 
f o r  the dropped specimens i s  approximately 170. There i s  a time lapse 

o f  approximately 0.25 t o  0.5 seconds before the bismuth so l id i f i es ,  

as shown i n  Figure 2, which i s  suf f ic ient  f o r  convection ce l l s  t o  form 
and give r i s e  t o  the structure found f o r  Specimen 1-3. The Froude 

number i s  less than un i t y  f o r  a l l  specimens, thus unusual sedimntat ion 

e f fec ts  should not be present [Reference 31, as shown i n  Figures 19 

and 19a. The four dropped specimens appear to have "grain boundaries". 

The exact meaning of t h i s  aspect i s  not clear, a1 though the boundaries 

appear t o  be composed pr imar i ly  o f  gallium. Since both gal l ium and 
bismuth expand on sol idi f icatSon, i t  may be a pressure effect. This 

i s  discussed fur ther  i n  Section 7.2 

6.3 Scanninq Electron Microscopy- 

The specimens were examined wi th  the scanning electron microscope 

(SEM) i n  order to  determine i n  more deta i l  the morphological features 

o f  the specimens. Figure 20 shows the specimens a t  100, 1000 and 10,000X 

magnification. The white material i s  alumina that  was used to  po l ish  

the specimens and became imbedded i n  the gallium. 
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The most l n t e n s t l n g  features are (1 ) the "gra ln boundaries" a n  

gal 1 I urn, (2) the gal 1 1 urn d m p l  e t s  are somewhat d l  storted, I ndi  cat1 ng 

t h a t  the high cool ing rates shown i n  Table 1 caused some surface tenslon 

Interact ion,  and (3) the higher cool ing rates f o r  specimens 9-2 and 

4-5 apparently af fected the gal l l um d rop le t  s lze. 

6.4 Electron Microprobe Analysis 

Atten,~ts were made t o  analyze the s ~ ~ c l m e n s  by m l  croprobe analyses. 

Due to the 1 pm beam slze, only  the contro l  speclmen could be proper ly  

scanned. Figure 21 I l l u s t r a t e s  the scan obtained w i t h  the contro l  speci- 

men and dropped speclmen 9-2. Even a t  a higher magnif icat ion, 9-2 could 

n o t  be resolved. It was possible, however to  v e r i f y  t h a t  gal 1 lum was 

the dlspersed phase. Llne scannlng indicated 1 l t t l e  o r  no a l l o y i n g  

between the gal l ium and bismuth, i n  accord w i t h  the phase diagram. 

7.0 ELECTRON1 C PROPERTIES 

7 .1 Ha l l  E f f e c t  and E lec t r i ca l  R e s i s t i v l  ty Measurements 

Longitudlnal samples approximately 1 mn t h i ck  were s l i c e d  f r o m  
each specimen w l t h  a w i re  saw, using an I c e  water -s i l i con  carbide s l u r r y  

as the c u t t i n g  compound. Hal 1 e f f e c t  voltages were measured a t  U.C.L.A. 
i n  t h e i r  equipment and the bulk r e s i s t i v l  t i e s  a t  TRW on a Leeds four-  

p o i n t  guarded probe a t  room (~23 'C)  and 'dry I c e  ( - 7 8 O C )  temperatures. 

Table 2 l l s t s  the Ha l l  coef f l c len t ,  the two r e s i s t l v l t l e s ,  and the Ha l l  

mob i l i t y  values. The fo l low ing deductions may be made: 

1 . The Hal 1 c o e f f i c l e n t  i s  o f  the same order as po l yc rys ta l l  l ne  

bismuth a1 though somewhat smaller and has a s i m i l a r  magnetic 

f l e l d  dependence. I n  the s ingle energy band model (e lect ron 

ca r r i e rs  only)  the decrease i n  the Ha l l  c o e f f i c i e n t  represents 
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an increase i n  e f f e c t i v e  carriers. Since bismuth i s  the con- 
tinuous phase, i t  probably I s  l a r g e l y  con t r i  bu t lng  t o  the 

Hal 1 coefficient, w i t h  some cont r ibu t ion  from the g a l l  lum. 

Since the Hal 1 c o e f f i c i e n t  i s  two t o  seven times smal ler 

than pure po l yc rys ta l l  i n e  bismuth, t h i s  ind icates t h a t  the 

specimens have two t o  seven times more ca r r i e rs  than bismuth. 

2. The room temperature r e s i s t i v i t y  values are lower than pure 

bismuth, which agrees w i t h  the pos tu la t ion  o f  addl t l ona l  

ca r r i e rs  as indicated by the Ha l l  c o e f f i c i e n t  values. 

3. The negative temperature c o e f f i c i e n t  o f  resistance (TCR) 

of the specimens, together w i t h  the Ha l i  c o e f f i c i e n t  mob- 

i l i t y  and r e s i s t i v i t y  values, i s  i nd i ca t i ve  tha t  the 

system i s  behaving as a heavi ly  doped semi conductor. 

4. The Ha1 1 mob i l i t y  ( p  - %) i s  independent o f  c a r r i e r  con- 

centrat ion.  Thus the decrease i n  the m o b i l i t y  as con- 

t rasted t o  bismuth may be due t o  (a)  a decrease i n  the 

re laxat ion time T, o r  (b) an increase i n  e f f e c t i v e  mass 

m. Most l i k e l y  i t  i s  due t o  a decrease i n  re laxa t ion  tlme, 

resul ti ng i n  increased surface ( i n  the bul k )  scat ter1 ng 

from the second phase dispersion o f  the gal l ium i n  the 

b i  smu t h  . 

7.2 Superconductivity Measurements 

Superconducti v i  t y  measurements were made on a1 1 o f  the specimens. 

The method u t i l i z e d  was s im i l a r  t o  t ha t  o f  Merriam and Von Herzen 

[Reference 4 1  i n  t ha t  each specimen was I n d i v i d u a l l y  placed i n  a tuned 

(1.4 kHz) induct ion coi  1 and a 33 ohm carbon r e s i s t o r  mounted i n  thermal 

contact w i th  the coi  1. Figure 22 schematical l y  ill ustrates the i n s t r u -  
mentation u t i l i z e d ,  and Figures 23 and 24 are photographs o f  the actual 

apparatus. Yhen the sample becomes superconducti ng , the r e j e c t i o n  o f  

the magnetic f i e l d  causes a voltage s h i f t  which i s  detected by the wave 

analyzer and p lo t ted  on an X-Y recorder along w i th  the temperature, An 



1
 

W
L

E
 

H
EU

LI
TT

-P
A

C
U

 

C
O

IL
 
-
 HOW

L 
31

O
A 

W
AV

E 
A

M
LY

ZE
R

 
I 

2
 

A 
* 

L
 

1 H
EU

LI
TT

- 
PA

C
U

R
D

 
1 

X-
Y 

RE
CO

RD
ER

 
>

 

33
n
 

CA
RB

OW
 

HE
UL

IT
T-

PA
CK

AR
D 

R
E

SI
ST

M
E

 
. 
,
 HO

DE
L 

41
3A

 
?H

EW
IO

ET
ER

 
M

: 
NU

LL
 V

OL
T 

E
T

E
k

 

F
ig

u
re

 2
2.

 
B

lo
ck

 D
ia

gr
am

 o
f 

S
u

p
er

co
n

d
u

ct
i v

i t
y

 A
pp

ar
at

us
 



F i g u r e  23. I n s t r u m e n t a t i o n  and A ~ p a r a t u s  U t i  i i zed i n  t he  
Superconduc t i  v i  t y  Tes ts  . 

F i g u r e  23. Close-up Photograph o f  Specimen C o i l s  



add1 t l ona l  feature o f  t h i s  method I s  t h a t  mu1 t i p l e  trans1 t lons  can be 

observed dur lng a s ing le  temperature sweep. The temperature o f  each 
speclmen was measured by recording the voltage drop across the res i s to r ,  

which was generated by a constant current  through the r e s i s t o r .  Power 
d i ss ipa t i on  i n  the chrbon resistance theriiometers d i d  no t  exceed 10 pW. 

The temperature c a l i b r a t i o n  was done by u t i  1 i z i n g  a nlobium sa,nple, and 

the unknown temperatures were read from a three p o i n t  p l o t  o f  voltage 
versus temperature on log- log  paper throughFthe po in ts  4.2, 9.2 and 2 9 7 O K  

f o r  each res i s to r .  The average t r a n s i t ~ o n  temperatures are considered 
t o  be accurate t o  2 0. S°K. 

'The temperature sweep was obtained by r a i s i n g  and lowering the 

samp:e p la t fo rm containing the s liples i n  the c o i l s  through the tcm- 
perature gradient  a b o ~  the he1 i urn. l eve l  , i n  a MVE m d e l  HLSM-60 

cryos t a  t. 

I n i  t i a l  experiment; were conducted from approximately 1.6OK 

(lower 1 im! t o f  system) to  4 . 2 O K ,  and no t rans i t i ons  wcre apparei- ,. 'n 

the samples. The experiments were then performed from 4.2"K t o  approxi- 

mately 20°K, where superconduc ti ng t rans i t i ons  were found. The t ran-  
s i  t i o n  temperature curves f o r  specimens 4-5 and niobium are shown i n  

Figures 25 and 26 which were t yp i ca l  f o r  each specimen except 1-3. The 
small hysteresis o f  the curves indicates t h a t  good temperature equi li brium 
was obtained. Table 3 gives the t r a n s i t i o n  temperatures obtained on the 
sampjes, plus some rcference t r a n s i t i o n  temperatures f o r  var ious form< 

o f  gal 1 i um and b i  smuth. 

The Tc values f o r  specimen 2-4 were obtained i n  a l a rge r  c o l l  , w i t h  
concolni t a n t  smaller s!gnal t o  noise r a t i o .  The Tc val be i s  probably 

comparable t o  the o ther  dropped specimens, bu t  due t o  soi 1 ma1 func t ion  
dur lng f i n a l  testing,a value corresponding t o  the other  samples under 

Iden t i ca l  t e s t  condit ions could no t  be obtained. Specimen 1-3 showed 
anomalous behavior i n  three d i f f e r e n t  c o i l s  and under two separate t e s t  
condi t ions.  The inductance o f  the f i n a l  t e s t  co i  1 changed continuously 
from approximately !4OK to 6"K, w i t h  sharp change near 7.4OK. Figure 
27 i s  a t race from the f i n a l  t e s t  run, showing t h i s  anomalous behav4ar. 
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SUPERC(WIWT1VITY TRANSITION EWERAWES 
OF W I M - B I ~  I r u I s c I u  s y s n t s  AWD 

OTHER FORK OF GALLIUM AND BISMUTH 

'IRANSITION 
MTERIM REFERENCES 

6a-Bi Samples: (a 

L i  tcraturo Values 

Bul k Ga, a phase 1.091 
Particulate Ga, B phase 6.2 

Particulate Ga, y phase 7.6 
Bulk Ga (unknown modification 6.3 

a t  35,000 atm) 
Bulk (ir (unknown modification 7.5 

a t  35,000 - 1 atan) 
Thin f i l m  Ga (formed below 10°K) 8.40 
Thin f i l m  Ga (formed a t  300°K) 7.2 
Bulk B i  not superconducti ng 

Bi I 1  (25,000 - 26,800, atm) ~ 3 . 9  

Thin f i l m  Bi (formed below 
~1 o0 K) 

(a) Midpoint 1, averaged 

(b) Possible transi t ion 

(c) Resul t s  from di f ferent  co i l  configuration 



It I s  strongly suggested tha t  t h l s  phenomena b Investigated further. 

The suptrconductlng t rans l t l on  temperatures o f  the samples are 

s u ~ r i s l n g  I n  that  but k blsmrth does no t  superconduct, bulk gal l lum 
(a phase) supenonducts a t  appmxlmately 1°K (well below the Tc values 

obtained), and a l loy ing between gal l lum and blsmuth I s  negl lglble. As 

shown I n  Table 3 there a n  anomalous gal l lum and blsmuth phases o r  

mod l f l c~ t l ons  whlch have Tc values close to those obtalned I n  these 

sanples, such as t h i n  f i l m  ga l l  lum [References 3, 8, 171, par t lcu la te  

B and/or y gal 1 lum [Reference 181, t h i n  f i l m  bismuth [References 8 and 

93, o r  high pressure bismuth I11 [Reference 10, 11 and 123. Actually, 

t h i n  f i l m  bismuth and bismuth I11  may be the same phase [Reference 101. 

Chester and Jones [Reference 131 suggest that  bismuth i s  nearly a super- 
conductor and the t rans i t i on  i n  bismuth 111 i s  associated w i th  a tran- 

s i  t i o n  t o  a more closely packed crystal  l i n e  form. k r r i a m  and Von 

Herren [Reference 41 have obtained increased T, values fm quenched 

In-Sn a l loys and Sn-Ga (mutually insoluble i n  the sol id-state)  mixtures 

due to induced p las t i c  strains. Another source o f  the higher Tc values 

could be f r o m  the large surfaces o f  the gall ium and bismuth act ing as 
"granular superconducting" material [References 14, 15 and 16) I n  which 

0 

small grains (20-200A) have much higher Tc values. 

Thus there are several explanations f o r  the Tc values obtained: 

. (a) anomalous phases o f  gal l ium and/or 3ismuth present i n  the bulk, (b)  

anomalous phases between the in terna l  surfaces o f  the dispersed gal 1 ium 
and bismuth, (c) large internal  pressures exerted on the bulk materials 

during so l id i f i ca t ion ,  resu l t ing i n  p l as t i c  deformation i n  the speci- 

mens, o r  (d) a combination o f  the above three. 

A s impl i f ied stress analysis was performed t o  determine i f  the 

expansion o f  gall ium and bismuth during so l i d i f i ca t i on  could produce 
re l a t i ve l y  high internal  stresses w i  t h i  n the samples. The assumption 

was made that  a sphere o f  gal 1 i um was embedded i n  bismuth, and that  a 
radia l  stress was caused by (1) the expansion o f  gal l ium alone, and (2)  

both the expansion o f  bismuth and gallium. Gallium has a volume 

expansion o f  3.1% [Reference 201 and bismuth has a volume expansion o f  



3 . S  [Rahnnce 211. The kchan lca l  pmpert les o f  g a l l l u  could not ba 
found, therefore the properties o f  blsmuth ware u t l l l u d  [Rrfrrence 211 
as an approxlnrrtlon. 

The calculated rad la l  s t n s s r r  paw a ranga of va lur r  k W n  lo3  
W r  (10,000 a*) and 10' Wa (100.000 rtn) , drprndlng upon tha &(ma o f  
exprnslon. Cornprrlson o f  these values wi th  thosr o f  Zhrrkov and h l l n l n  
[Reference 231 f o r  antimony and other metals tha t  should be s l m l l r r  to 
gall ium suggest tha t  a value o f  approx lu te ly  5 x lo3 Wa (50.000 r t a ~ )  

i s  qual i  t a t l ve l y  accurate. These values bracket the presstire ranges 
f o r  B i  I1  and B i  111. I n  addi t lon, Buckel and Gey [Reference 19) 
observed tha t  gal 1 tun superconducts a t  6.3OK a t  3.5 x l o3  MPa (35,000 

atm) and upon lowering the pressure to 0.1 Wa (1  atm), the Tc was raised 

to 7 . 5 O K  w i  thout an apparent phase t ransi t ion.  By comparl son. Feder, 
e t  .a1 . [Reference 181 prepared t h e i r  samples by u l  trasonical l y  dis-  

persing gall ium a t  50°C i n  an ethyl alcohol/sodium oleate solut ion and 

cooling the dispersed specimens by two d i f f e ren t  methods. The f l r s t  
method consisted o f  cool i ng  to room temperature, then quenched I n  

l i q u i d  nitrogen and brought to l i q u i d  he1 ium temperature. This produced 
both B and y gall ium i n  a 5:l r a t i o  respectively as measured by f re -  
quency s h i f t  during a temperature sweep (experimental method s im i la r  to 
the one used i n  t h i s  program). The second method consisted o f  quenching 
t o  O°C and holding the specimen a t  tha t  temperature f o r  24 hours befom 

cooling t o  l i q u i d  he1 ium temperatures. This method produced a and 0 

gall ium i n  the r a t i o  o f  4:1, w i th  a very small amount o f  y gallium. 

The crystal lographic cel: constants o f  B and y gall ium are not  
given i n  the standard X-ray f i l a s  [Reference 221, and Reference 18 
d id  not give the de ta i l s  o f  t h e i r  X-ray study done a t  1 i qu id  nitrogen 

temperatures. Thus a comparison cannot be made between the various 
authors referenced and the specimens processed a t  MSFC. 

As mentioned previously, the Tc values given i n  Table 3 a n  

averaged and comparison o f  Figure 25 f o r  specimen 4-5 w i  t h  Figure 26 
f o r  nloblum shows that  the t rans i t ion f o r  4-5, while clear, i s  somuhat 

more d i f fuse than the niobium transl t ion.  Since the apparatus i s  capable 



o f  detecting mu1 ti p le  Tc' s ,' l t appears tha t  the t o t a l  t ransi  t l o n  involves 
both bismuth and gallium. 

Inasmuch as the ga l l  ium i s  f ine ly  dispersed i n  the bismuth, i t  may 
be exhi b i  t l n g  the "granular superconductl ng" e f f ec t  [References 14, 15 
and 163 o r  act ing as a t h i n  f i l m  as well [Reference 171, since r large 

number o f  the gall ium pa r t i c l e  sizes are w i th in  t h i s  s i  ze regime. 

The main t ransi  t ion, however, probably i s  due t o  pressure e f fec ts  

(e.g., y Ga and B1 111) , as evidenced from the metal l u rg ica l  examination 

and stress calculations. This i s  corroborated by the s l i g h t  slope to 

the curves near the main t rans i t ion point, since the internal  pressure 

and consequently the transi t i on  poi n t (s )  [Reference 41 w i  11 vary w i th  
temperature due t o  change i n  thermal expansion. The unusual behavior 
o f  specimen 1-3 may a1 so be due t o  t h i s  ef fect ,  a1 though the curve i s  
so anomalous that  other unknown factors must be contr ibut ing also. 

Since most o f  the high Tc forms o f  gal 1 i urn and bismuth 1 i e  w i  t h i n  the 

t rans i t ion region o f  the specimens, i t  i s  d i f f i c u l t  to  p inpoint  precisely 
the exact superconducti ng mechanism that  i s  occurring. 



8.0 CONCLUSIONS 

The experimental drop tower package, designed to sol id1 fy h a t e d  
specimens during the four second, low grav i ty  f ree fa1 1 condi t lons, 
operated sat ls fac tor i  l y  and met a1 1 the t es t  c r l  t e r l r .  

Stable dlspersions o f  gal l ium i n  bismuth were successfully pro- 
cessed i n  the MSFC drop tower fac i  11 t y  u t i l  I zing the experimntal drop 
tower package. 

Metal lurgical examlnatlon o f  both the control and low gravi t y  
processed specimens i ncl uded opt1 cal and scanni ng e l  ectron microscopy 
and electron mlcroprobe analyses. Each o f  these methods d e m n s t r r t d  
that thr microstructure o f  the low gravl t y  processed speclmnr exhlbl ted  
a f l ne r  and more even dispersion o f  gal l ium I n  bismuth than the one 
gravl t y  control specimen. The major i ty  o f  dlsperslons o f  gal l ium i n  the 
low gravl t y  processed specimens were 1 prn o r  less. From an e s t i m t l o n  
o f  the ava i l  able tlme before the monotectic bismuth sol i d i f i c a t l o n  
temperature was reached, and calculat ion o f  the Raylelgh n w r  f o r  the 
galliun-bismuth system, thermal convection ce l l s  could be set  up i n  
the sanple contalner whlch would give the microstructure seen I n  the 
control specimen. The calculated Froude number was less than uni ty, 

thus no unusual sedimentation ef fects were observed, 

The metal 1 urgl  cal exam1 nation a1 so Indicated the f o l  l w l n g :  

1. The cool I ng ra te  appears t o  have a def l  n i  te e f f ec t  on 
dlspersion size, wi th slower cool i ng rates giv lng 
f i n e r  dispersions. 

2. The expansion o f  both bismuth and gall ium upon 

sol l d i  f i ca t i on  appears t o  have affected the mlcro- 
structure, par t lcu l  a r l y  the low gravl t y  processed 

specimens. The e f f ec t  I s  pr imar i ly  manlfested by 
the appearance o f  "grain boundaries" whlch upon 
closer examination were found t o  be f i l l e d  w i th  
gallium. 



3. A1 though the dispersion i n  the low g rav i t y  processed 

samples was too f i n e  t o  permit a complete e lec t ron  

microprobe analysis, traces on the contro l  sample 

showed 1 i t t l e  o r  no a1 loy ing  between the gal 1 ium 
and bismuth. 

Measurement o f  the Hal 1 vol tages and bul k r e s i s t i v i t i e s  o f  t he  

samples gave the f o l l  owing resul t s  : 

1. The Ha l l  coe f f i c i en ts  are two t o  seven times smaller 

than the val ues f o r  pure polycrys t a l l  i ne bismuth. 

Since bismuth i s  the continuous phase, the c a r r i e r  

concentration i n  the processed samples i s  two t o  

seven times larger .  The type o f  ca r r i e rs  (electrons 
o r  holes) could no t  be determined since the con- 

ventional method would destroy the samples. 

2. The decrease i n  Hal 1 mobi 1 i t y  from t h a t  o f  bismuth 

i s  probably a t t r i bu tab le  t o  a decrease i n  the re laxat ion  

time due t o  bulk c a r r i e r  scat te r ing  by the dispersed 

gall ium. 

3. The lower room temperature r e s i s t i v i t y  values as 

compared t o  bismuth are i nd i ca t i ve  o f  addi t ional  

ca r r i e rs  and corroborate the Hal 1 mob i l i t y  resu l ts .  

4. The negative temperature c o e f f i c i e n t  o f  resistance, 

along w i th  (2)  and (3) show t h a t  a l l  o f  the specimens, 

inc luding the contro l  specimen, are behaving as heavi ly  

doped e x t r i n s i c  semi conductors. 

Superconducti v i  t y  tes ts  on the processed specimens were performed 

f r o m  approximately 1.6OK t o  20°K. The major i ty  o f  the low g rav i t y  pro- 
cessed specimens superconducted between 7.4 to  8.0°K, w i th  an uncertal  n t y  

o f  + O.S°K. One o f  the low g rav i t y  processed samples (2-4) super- 

conducted a t  6.0°K; however, t h i s  was an e a r l i e r  t e s t  w i th  a d i f f e r e n t  

c o i l  conf igurat ion and may not be i nd i ca t i ve  o f  the t rue t r a n s i t i o n  



Thr control speclmn (1-3) shomd a very anomrlous behavlor I n  
tom o f  a superconductlng t ransi  t l o n  point. There my be a posslble 

t rans l t lon po ln t  a t  7 . 4 O K ,  but  It I s  s tmngly  suggested t ha t  t h l s  sanrple 
be Investigated further. 

Inves t lgat lon I n to  the superconductlng mechanl smr tha t  my k 
occurring d l d  not reveal the exact mode, but  the following I s  postulated: 

1. HIgh Internal  pressures and p l as t l c  st ra lns probably 
ex i s t  I n  the specimens. This i s  corroborated by a 
stress analysis and could give r i s e  t o  the higher 
trans1 t i o n  forms o f  gal 1 I um (y  gal 11 un) and/or blsmuth 
(bismuth 111). The s l l g h t  change i n  slope i n  the 
t rans i t i on  curves as the temperature i s  changed a1 so 
tends to  confirm the pressure/strain ef fect .  

2.  The extremely f l ne  dispersion o f  gal l ium i n  bismuth 
may also give r i s e  t o  the "granular superconducting" 
effect. Also, a f i l m  e f f ec t  may be present due t o  
the large internal  gal 1 i umlbismuth inter face surfaces 
that  exi s t  i n  the low gravi ty processed speclmens, 
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